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         Abstract: A new finite difference Algorithm called the Restrictive Taylor Approximation 

(RTA) is implemented to find the numerical solution of Kuramoto–Sivashinsky equation 

which is nonlinear partial differential equation. This method is a new explicit method. The 

accuracy of the method is assessed in terms of the absolute error which is very close to zero. 

We solve also Burger’s equation and Viscous Burger equation. 
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1. Introduction 

The Kuramoto–Sivashinsky (K-S) equation was derived independently by Kuramoto [1] and 

Sivashinsky [2]. This equation was originally derived in the context of plasma instabilities, flame front 

propagation, and phase turbulence in reaction-diffusion system [3]. It occurs in context of long waves 
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on the interface between two viscous fluids [4], unstable drift waves in plasmas, reaction-diffusion 

systems [5], and flame front instability [2]. The KS equation is useful to model solitary pulses in a falling 

thin film [6].This equation models the fluctuations of the position of a flame front, the motion of a fluid 

going down a vertical wall, or a spatially uniform oscillating chemical reaction in a homogeneous 

medium [7].  

In this paper, we consider the Kuramoto-Sivashinsky (K-S) equation in the form 

∂u

∂t
+ u

∂u

∂x
+ α

∂2u

∂x2
+ υ

∂4u

∂x4
= 0 (1) 

where α and υ  are real constants.  

Many authors studied the Kuramoto–Sivashinsky equation by using various analytical and 

numerical techniques. The KS equation has been studied by many methods, including Chebyshev 

spectral collocation method [8], including orthogonal cubic spline collocation method [9], discontinuous 

Galerkin method [10], tanh-function method [11] and by BDF method [12]. The numerical solution of 

the Kuramoto–Sivashinsky equation is found by radial basis function (RBF) based on mesh-free method 

[13] and the Lattice Boltzmann method [14]. In this paper, numerical solution of the Kuramoto–

Sivashinsky equation using the Restrictive Taylor approximation [15, 16, 17] is presented. 

2. The Restrictive Taylor Approximation (RTA) Method  

Constructing a function 𝑓(𝑥) that can expand in the Restrictive Taylor approximation as the form 

[15,16]: 

𝑅𝑇𝐴𝑛,𝑓(𝑥)(𝑥) = 𝑓(𝑎) +
(𝑥 − 𝑎)

1!
𝑓′(𝑎) + ⋯+

(𝑥 − 𝑎)𝑛−1

(𝑛 − 1)!
𝑓(𝑛−1)(𝑎)

+
𝜀(𝑥 − 𝑎)𝑛

𝑛!
𝑓(𝑛)(𝑎) 

(2) 

where 𝜀 is a parameter to be determined by adding the following condition. 

𝑅𝑇𝐴𝑛,𝑓(𝑥𝑎) = 𝑓(𝑥𝑎) (3) 

Some points 𝑥𝑎 in the domain of the function  𝑓(𝑥). The function 𝑅𝑇𝑛,𝑓(𝑥) is called restrictive 

Taylor approximation of order n of the function 𝑓(𝑥) at the point 𝑥 = 𝑎.  Assume the function 𝑓(𝑥) and 

its derivatives up to an order 𝑛 + 1 are continuous in a certain neighborhood of a point (𝑎). Suppose, 

furthermore, that 𝑥 is any value of the argument from the indicated neighborhood and 𝜀 is the restrictive 

Taylor parameter, then there is a point 𝜉 lies between the points (𝑎) and 𝑥 such that the formula: 

𝑓(𝑥) = 𝑅𝑇𝐴𝑛,𝑓(𝑥)(𝑥) + ℛ𝑛+1(𝑥, 𝜀(𝑥))                                                               (4) 

is true, for which 
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ℛ𝑛+1(𝑥, 𝜀(𝑥)) =
𝜀(𝑥 − 𝑎)𝑛+1

(𝑛 + 1)!
𝑓(𝑛+1)(𝜉) −

𝑛(𝜀 − 1)𝑛+1(𝑥 − 𝑎)𝑛+1

(𝑛 + 1)! (𝑥 − 𝜉)
𝑓(𝑛)(𝜉),       𝜉

∈ [𝑎, 𝑥] 

(5) 

where ℛ𝑛+1(𝑥, 1) is the Taylor remindar term. 

2.1. Restrictive Taylor Approximation of the Exponential Matrix 

 The exponential matrix exp(rA) can be formally defined by the convergent power series 

exp(𝑟𝐴) = 𝐼 + 𝑟𝐴 +
𝑟2

2!
𝐴 +⋯ = ∑

𝑟𝑛

𝑛!

∞

𝑛=0

𝐴𝑛,    𝐴0 = 𝐼      (6) 

where A is a (𝑁 − 1) × (𝑁 − 1) matrix [18]. 

  In the case of RT approximation of single function the term 𝜖𝑖 in equation (2), it can be reduced 

to the square restrictive matrix Γ. 

 where Γ = 𝜖𝑖I  and I are the identity matrix. 

Γ = 𝜖𝑖𝐼 =

(

  
 

 𝜖1,𝑗
 𝜖2,𝑗

⋯ 0

⋮ ⋱ ⋮

0 ⋯
 𝜖𝑁−2,𝑗

 𝜖𝑁−1,𝑗)

  
 

 (7) 

So the Restrictive Taylor Approximation of The exponential matrix exp(rA) takes the form[19,20,21]: 

𝑅𝑇1,exp (𝑟𝐴)(𝑟) = 𝐼 + 𝑟Γ𝐴 = 𝐼 + 𝑟𝜖𝑖𝐼 𝐴 (8) 

 

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + 𝑘𝑢𝑡 +
𝑘2

2!
𝑢𝑡𝑡 +

𝑘3

3!
𝑢𝑡𝑡𝑡 +⋯ 

(9) 

𝑢𝑖,𝑗+1 = 𝐸𝑥𝑝 [𝑘
𝜕

𝜕𝑡
] 𝑢𝑖,𝑗  (10) 

2.2. Restrictive Taylor’s Approximation for Kuramoto–Sivashinsky Equation 

 The exact solution of grid representation of Eq. (1) is given by 

𝑢𝑖,𝑗+1 = 𝐸𝑥𝑝 [−𝑘 (𝑢
𝜕

𝜕𝑥
+ 𝛼

𝜕2

𝜕𝑥2
+ 𝜐

𝜕4

𝜕𝑥4
)] 𝑢𝑖,𝑗 (11) 

 

𝑢𝑖,𝑗+1 = 𝐸𝑥𝑝[−𝑘(𝑢𝐷𝑥 + 𝛼𝐷𝑥
2 + 𝜐𝐷𝑥

4)] 𝑢𝑖,𝑗 (12) 

 

The approximation of the partial derivative 𝐷𝑥 , 𝐷𝑥
2  and  𝐷𝑥

4   at the grid point (𝑖ℎ, 𝑗𝑘) will take 

the forms 
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𝐷𝑥𝑢 =
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2ℎ
 (13) 

𝐷𝑥
2𝑢 =

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

ℎ2
 (14) 

𝐷𝑥
4𝑢 =

𝑢𝑖+2,𝑗 − 4𝑢𝑖+1,𝑗 + 6𝑢𝑖,𝑗 − 4𝑢𝑖−1,𝑗 + 𝑢𝑖−2,𝑗

ℎ4
 (15) 

where  ∆𝑥 = ℎ,   ∆𝑡 = 𝑘 

The result of making this approximation Eq. (15) will take the form  

𝑈𝑗+1 = exp(𝑟𝐴)𝑈𝑗 ,     𝑟 =
𝑘

 ℎ4
 (16) 

where 

𝑈𝑗 = (𝑢1,𝑗, 𝑢2,𝑗, 𝑢3,𝑗 …𝑢𝑁−1,𝑗)
𝑇    (17) 

So the restrictive Taylor approximation of the first order 𝑅𝑇1,exp(𝑟𝐴) of the exponential matrix 

function 𝑒𝑥𝑝(𝑟𝐴) will take the form. 

𝑅𝑇1,exp(𝑟𝐴) = 𝐼 + 𝑟 ∈𝐿1 𝐴 = 𝐼 + 𝑟𝜖𝑖𝐼 𝐴  

where 𝐴 is 𝑁 − 1 × 𝑁 − 1 real constant matrix, 𝐼 is the identity matrix and ∈𝐿1= [∈𝑖,𝐿1] is the diagonal 

matrix of the restrictive term 

𝐴 =

(

 
 
 
 
 

m d 𝑓 0 0 0 0 0
b m d 𝑓 0 0 0 0
𝑐 b m d 𝑓 0 0 0
0 𝑐 b m d 𝑓 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 𝑐 b m d 𝑓
0 0 0 0 𝑐 b m d
0 0 0 0 0 𝑐 b m)

 
 
 
 
 

𝑁−1×𝑁−1

 (18) 

  

where 

m = 2r𝜖𝑖𝛼ℎ
2 − 6𝜈𝑟𝜖𝑖 

𝑏 = 𝑟 𝜖𝑖 (𝑀 
ℎ2

2
− 𝛼ℎ2 + 4𝜈) 

𝑐 = −𝑟 𝜖𝑖𝜈 

𝑑 = 𝑟 𝜖𝑖 (−𝑀 
ℎ2

2
− 𝛼ℎ2 + 4𝜈) 

𝑓 = −𝑟 𝜖𝑖 𝜈 

(19) 

 

𝑈𝑗+1 = (𝐼 + 𝑟Γ𝐴)𝑈𝑗 = 𝐵𝑈𝑗 (20) 
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Then the equivalent scalar approximation of restrictive Taylor approximation for the Kuramoto–

Sivashinsky equation is on scalar form 

 

𝑢𝑖,𝑗+1 = −𝑟 [(
ℎ3

2
𝜖𝑖(𝑢𝑖,𝑗)(𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗) + 𝛼 ℎ

2𝜖𝑖(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)

+ 𝜈𝜖𝑖(𝑢𝑖+2,𝑗 − 4𝑢𝑖+1,𝑗 + 6𝑢𝑖,𝑗 − 4𝑢𝑖−1,𝑗 + 𝑢𝑖−2,𝑗))] + 𝑢𝑖,𝑗 

(21) 

3. Stability Analysis 

We use Gerschgorin’s theorem [22] to examine the stability of the finite difference equation (20).  

 

Eq.(20) the matrix 𝐵 takes the form: 

𝐵 =

(

 
 
 
 
 

D d 𝑓 0 0 0 0 0
b D d 𝑓 0 0 0 0
𝑐 b D d 𝑓 0 0 0
0 𝑐 b D d 𝑓 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 𝑐 b D d 𝑓
0 0 0 0 𝑐 b D d
0 0 0 0 0 𝑐 b D)

 
 
 
 
 

𝑁−1×𝑁−1

 (22) 

 

where 

D = 2r𝜖𝑖𝛼ℎ
2 − 6𝜈𝑟𝜖𝑖 + 1 

𝑏 = 𝑟 𝜖𝑖 (𝑀 
ℎ2

2
− 𝛼ℎ2 + 4𝜈) 

𝑐 = −𝑟 𝜖𝑖𝜈 

𝑑 = 𝑟 𝜖𝑖 (−𝑀 
ℎ2

2
− 𝛼ℎ2 + 4𝜈) 

𝑓 = −𝑟 𝜖𝑖 𝜈 

(23) 

 

for D > 0  

we get ‖𝐵‖∞ = 1    

which will ensure the stability for  

𝑟𝜖𝑖(3𝜈 − 𝛼ℎ
2) <

1

2
 (24) 

4. Numerical Examples 
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Consider the Kuramoto–Sivashinsky Eq. (1); the domain is covered by a rectangular grid with 

spacing h and k in the x, t directions respectively. The grid point (𝑥, 𝑡) is denoted by (𝑖ℎ, 𝑗𝑘) and 

𝑢(𝑖ℎ, 𝑗𝑘) = 𝑢𝑖,𝑗  where  𝑖 = 0(1) 𝑁 ; 𝑗 is a non-negative integer. In this section, we solve four examples 

to check performance of the method. Accuracy of the results is checked by the absolute error.  

Example 1: We consider the Kuramoto–Sivashinsky Eq. (1) for 𝛼 = −1,    𝜐 = 1 with exact solution is 

given by 

𝑢(𝑥, 𝑡) = 𝑏 +
15

19√19
[tanh3(𝑘(𝑥 − 𝑏𝑡 − 𝑥𝑜)) − 3 tanh(𝑘(𝑥 − 𝑏𝑡 − 𝑥𝑜))] (25) 

For 𝑏 = 5 ,  𝑘 =
1

2√19
 , 𝑥0 = −25  The boundary and the initial conditions are taken from the exact 

solution. Computational domain is [0,1]. The numerical results are obtained by RTA scheme Eq. (21) 

with h=0.1, k=0.00001. In Table 1, we show the absolute error. We expand the computation domain to 

[-30,30] and plot the RTA solution and exact solution in Fig. 1 for the values 𝛼 = −1, 𝜐 = 1 with ℎ =

0.4  and 𝑘 = 0.001 at times t =1, 4, 7.  

 

Table 1: The absolute error of the solution Example 1. using RTA at time step k=0.00001 and distance 

step h=0.1 for various values of (t, x) at 𝛼 = −1,    𝜐 = 1 

T Absolute Error 

x = 0.1 x = 0.5 x = 0.9 

0.0001 

 
8.881784197001252 × 10−16 0 1.77635683940025 × 10−15 

0.005 

 
9.769962616701378 × 10−15 2.753353101070388 × 10−14 0 

0.01 

 
9.769962616701378 × 10−15 2.8421709430404 × 10−14 0 

0.05 

 
4.440892098500626 × 10−15 1.77635683940025 × 10−15 5.329070518200751 × 10−15 

0.09 

 
4.440892098500626 × 10−15 4.529709940470639 × 10−14 1.509903313490213 × 10−14 

0.1 

 
7.993605777301127 × 10−15 5.684341886080801 × 10−14 1.687538997430238 × 10−14 

0.4 

 
1.740829702612245 × 10−13 8.748557434046234 × 10−13 1.820765760385256 × 10−13 

0.5 

 
3.028688411177427 × 10−13 1.500133350873511 × 10−12 3.055333763768431 × 10−13 

0.9 

 
1.858957432432362 × 10−12 8.982148358427366 × 10−12 1.77280412572145 × 10−12 

1 

 
2.784439345759892 × 10−12 1.342659317060679 × 10−11 2.639666263348772 × 10−12 
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Fig. 1. RTA solutions (dote) and exact solutions (Solid) at times t = 1, 4, 7 of Example 1 for 𝛼 =
−1,    𝜐 = 1 

 

Example 2: We consider the Kuramoto–Sivashinsky Eq. (1) for 𝛼 = 1,    𝜐 = 1 with exact solution is 

given by 

𝑢(𝑥, 𝑡) = 𝑏 +
15

19
√
11

19
[11 tanh3(𝑘(𝑥 − 𝑏𝑡 − 𝑥𝑜)) − 9 tanh(𝑘(𝑥 − 𝑏𝑡 − 𝑥𝑜))] (26) 

For 𝑏 = 5, 𝑘 =
1

2
√11/19 , 𝑥0 = −12,  The boundary and the initial conditions are taken from the exact 

solution. The computational domain is [0,1]. The numerical results are obtained by RTA scheme Eq. 

(21) at h=0.1, k=0.00001. In Table 2, we show the absolute error. We expand the computation domain 

to [-30,30] and plot the RTA solution and exact solution in Fig. 2 for the values 𝛼 = 1,    𝜐 = 1 with ℎ =

0.4  and 𝑘 = 0.001 at times t =1, 2, 3. 

 

Table 2: The absolute error of the solution Example 2. using RTA at time step k=0.00001 and distance 

step h=0.1 for various values of (t, x) at 𝛼 = 1,    𝜐 = 1 
T Absolute Error 

x = 0.1 x = 0.5 x = 0.9 

0.0001 

 
2.664535259100375 × 10−15 8.881784197001252 × 10−15 2.664535259100375 × 10−15 

0.005 

 
5.062616992290714 × 10−14 1.678657213233236 × 10−13 4.263256414560601 × 10−14 

0.01 

 
1.376676550535194 × 10−13 5.524469770534779 × 10−13 1.110223024625156 × 10−13 

0.05 

 
1.116440273563057 × 10−12 4.936495656693296 × 10−12 9.041656312547275 × 10−13 

0.09 

 
2.601474591301667 × 10−12 1.159072837708663 × 10−11 2.106759211528697 × 10−12 

0.1 

 
3.073097332162433 × 10−12 1.370814572965173 × 10−11 2.490452288839151 × 10−12 

0.4 

 
7.619505026923434 × 10−11 3.420010941113105 × 10−10 6.177636180382251 × 10−11 

0.5 

 
1.781526037802905 × 10−10 7.997709161600142 × 10−10 1.444080410806236 × 10−10 

0.9 

 
4.380242835111403 × 10−9 1.963648532665729 × 10−8 3.5392107022858 × 10−9 

1 

 
9.624979924183208 × 10−9 4.310962875564428 × 10−8 7.764083598260641 × 10−9 
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Fig. 2. RTA solutions (square) and exact solutions (Solid) at times t = 1, 2, 3 of Example 2 for 𝛼 =
1,    𝜐 = 1 

 

Example 3. We consider the Eq. (1) for 𝛼 = 0,    𝜐 = 0 Burger with exact solution is given by 

𝑢(𝑥, 𝑡) =
𝑥

𝑅 + 𝑡
 (27) 

The boundary and the initial conditions are taken from the exact solution. The computational domain is 

[0,1]. The numerical results is obtained by RTA scheme Eq. (21) at ℎ = 0.1, 𝑘 = 0.001. In Table 2, we 

show the absolute error.   

 

Table 3 The absolute error of the solution Example 3. using RTA at time step k=0.001 and distance step 

h=0.1 for various values of (t, x) at 𝛼 = 0,    𝜐 = 0    R = 500 
t Absolute Error 

x = 0.2 x = 0.6 x = 0.8 

0.01 

 
2.168404344971009 × 10−19 6.505213034913027 × 10−19 8.673617379884035 × 10−19 

0.05 

 
4.553649124439118 × 10−18 1.366094737331735 × 10−17 1.821459649775647 × 10−17 

0.1 

 
1.702197410802242 × 10−17 5.117434254131581 × 10−17 6.808789643208968 × 10−17 

0.4 

 
2.596664203102783 × 10−16 7.778066385411009 × 10−16 1.038665681241113 × 10−15 

0.9 

 
1.299578934049749 × 10−15 3.899658373995862 × 10−15 5.198315736198999 × 10−15 

1 

 
1.602450810933575 × 10−15 4.808219794538715 × 10−15 6.409803243734302 × 10−15 

2 

 
6.354671563263414 × 10−15 1.906179207533664 × 10−14 2.541760205088117 × 10−14 

5 

 
3.900981100646294 × 10−14 1.170181573167949 × 10−13 1.560095368863256 × 10−13 

7 

 
7.562375205216743 × 10−14 2.268610646560809 × 10−13 3.023870216722901 × 10−13 

10 

 
1.518759076835074 × 10−13 4.556218683587909 × 10−13 6.070595415241797 × 10−13 
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5. Results and Conclusion  

The Restrictive Taylor Approximation (RTA) is a type of finite difference approximation. The 

results in Table 1 are very close to exact solution and we can observe that at some points the absolute 

error is zero. This proves that our restrictive method at some cases obtains the exact solution. The 

executive time of calculating of Restrictive Taylor Approximation is relatively very small, the executive 

time of calculating 10000 steps is 0.43 seconds, this is relatively very small. RTA gives the numerical 

solution which is very close to the exact solution if it is known at one level of time, for example at  𝑡 =

𝑘, 𝑖. 𝑒. 𝑢(𝑥, 𝑡) = 𝑢(𝑖ℎ, 𝑘)  𝑖 = 1(1)𝑁. Without knowing the exact solution at one level, we try to use an 

approximate, fast efficient and accurate method with suitable very small step sizes ℎ and 𝑘, to get the 

needed almost exact solution at specific level, after which we continue the usual Restrictive Taylor 

process. All mathematical calculations and graphs are done using mathematica 8. 
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